

Childhood Development and Disease

- "Children are not just little adults"- includes childhood cancer
- Children do not suffer from the typical tumors of adulthood (e.g., epithelial carcinomas)
- Instead, pediatric solid tumors are typically of connective tissue (sarcomas) or neuroectodermal origin
- Why do sarcomas prefer childhood tissue?

Genetics of Childhood Sarcomas

Adapted from SEERS program data, NCI

- Childhood sarcomas are genetically distinct diseases
 - Rhabdomyosarcoma (RMS)
 - t(2;13), t(1;13); PAX-FKHR
 - Ewing's Sarcoma
 - t(11;12); EWS-FLI1
 - Synovial Sarcoma
 - t(X;18); SYT-SSX
- Lack of true/efficient animal models
 - Toxicity of fusion oncoproteins
 - Unknown cell/tissue of origin
- RMS is a tumor of skeletal muscletype histology, and most common
- PAX-FKHR RMS is notoriously aggressive

Rhabdomyosarcoma and PAX-FKHR

The PAX-FKHR Protein Fusion

100 Amino Acids

FKHR (Chromosome 13)

PAX3/7

The PAX-FKHR Protein Fusion

Myogenesis: Myoblasts, Cell-Cell Fusion, and then Muscle

- Little is known regarding PAX3/7 gene targets and cofactors
- Gene redundancy in mammals
- The underpinnings of PAX-FKHR pathogenesis remain poorly understood

Myogenesis: Myoblasts, Cell-Cell Fusion, and then Muscle

- Keller et al., *Genes Dev*, 2004- PAX3-FKHR expressed in differentiating muscle caused RMS tumorigenesis
- However, suboptimal tumor incidence and latency for *in vivo* profiling of PAX-FKHR cell biology and pathogenesis

A Drosophila PAX-FKHR Model System

A Drosophila PAX-FKHR Model System

Drosophila melanogaster (http://flymove.uni-muenster.de)

- Entire, intact organisms can be examined by conventional microscopy
- Fluorescent protein reporters
- Conditional expression of transgenes
- Unbiased forward genetic screens
- Rich conservation of mammalian genesparticularly PAX

Human and Fly PAX

Halder et al., 1995

- PAX6- master regulator of eye development in flies and mammals
- PAX6 misexpression in flies causes ectopic eyes
- True for BOTH fly and mammalian PAX6
- Why not PAX3/7-FKHR?

Human and Fly Pax3/7

- Drosophila and mammalian PAX3/7 are structurally and functionally conserved
- PAX3- e.g., Xue and Noll, Development, 1996
- Both mammalian and fly PAX3/7 participate in muscle biology
- Again, why not PAX-FKHR?

PAX-FKHR in Drosophila Muscle

- Myosin heavy chain (MHC) regulatory elements to direct *PAX-FKHR* expression in differentiated syncytial muscle
- Expression is predominantly post-embryonic
- Targets larval juvenile muscle undergoing physiologic growth

Weigmann et al., 2003, *Trends Genet*. http://flymove.uni-muenster.de

Real-Time Examination of *Drosophila* Muscle

PAX-FKHR Compromises Muscle Patterning

PAX-FKHR Muscle Demonstrates Fusion Defects

PAX-FKHR Muscle Demonstrates Fusion Defects

PAX-FKHR Myogenic Tissue in the Larval Central Nervous System

"Ok, but it is screenable?" Eric Olson, circa 2007

An Invertebrate Genetic Approach to the Study of PAX-FKHR

Drosophila melanogaster (http://flymove.uni-muenster.de)

- Entire, intact organisms can be examined by conventional microscopy
- Fluorescent protein reporters
- Conditional expression of transgenes
- Unbiased forward genetic screens
- Rich conservation of mammalian genesparticularly PAX

Ras Loss-of-Function Suppresses PAX-FKHR Activity and Rescues Lethality

✓ Tested loss-of-function *ras* mutation for PAX-FKHR suppression

✓ Dominantly suppressed PAX-FKHR pathogenicity in muscle

Rescues PAX-FKHR larval lethality to adult viability

Ras Loss-of-Function Suppresses PAX-FKHR Activity and Rescues Lethality

✓ Tested loss-of-function *ras* mutation for PAX-FKHR suppression

✓ Dominantly suppressed PAX-FKHR pathogenicity in muscle

✓ Rescues PAX-FKHR larval lethality to adult viability

Ras^{V12} Gain-of-Function and PAX-FKHR muscle

Deficiency Screening

Deficiency Screening

PAX-FKHR Deficiency Screening

	# Flies	"Expression-OFF" Df	"Expression-ON" Df
Deficiency Line	# Files Examined	MHC>>PAX7-FKHR	MHC>>PAX7-FKHR
"Expected"		50	50
(Mendelian Ratios)			5 0,
None (control 1)	75	71	29
None (control 2)	58	72	28
Df(2L)pr-A16	32	66	34
Df(2L)C'	42	69	31
Df(2L)BSC16	53	64	36
Df(2L)E110	49	47	53
Df(2L)BSC36	58	48	52
Df(2L)ast2	49	88	12
Df(2L)BSC30	37	86	14
	Non-modifier Suppressor		
	Enhancer		

PAX-FKHR Screening and Results

- Screened ~75% of the *Drosophila* genome (156 *Df* stocks)
- 36 Suppressors, 30 enhancers
- Secondary screening for individual gene suppressors/enhancers
- Microarry analysis of wild-type versus PAX-FKHR muscle: ~750 genes differentially expressed
 - Misexpressed genes = gene targets?
 - Unaltered genes potential co-factors

Molecular Effectors of PAX-FKHR Pathogenicity

Molecular Effectors of PAX-FKHR Pathogenicity

- 1. Muscle Development effectors/regulators
 - ✓ Mef2
- 2. Myoblast fusion regulators
 - ✓ Antisocial
- 3. Growth factor signaling
 - ✓ EGFR

Myogenesis: from precursor cell to syncytial muscle

- Hypothesis- Human PAX-FKHR drives myogenesis in fly tissues
- Experiment:
 - Ubiquitous expression (daughterless-Gal4>>UAS-PAX-FKHR) of PAX-FKHR during embryogenesis
 - Test for MHC expression (MHC-GFP reporter)

Human PAX-FKHR Drives Myogenesis in *Drosophila* Embryos

PAX-FKHR=daughterless-Gal4; UAS-PAX-FKHR

Blue=DAPI

Green=anti-GFP immunofluorescence

Myogenesis: from precursor cell to syncytial muscle

- *Mef2* is a critical gene in the myogenesis transcription factor cascade, and the master regulator of myogenesis in flies
- Hypotheses:
 - PAX-FKHR drives expression of *D-Mef2*
 - *D-Mef2* mutation will suppress PAX-FKHR pathogenicity

PAX-FKHR Screening and *D-Mef2*

- Df(2R)XI is a suppressor
- *Dmef*2²²⁻²¹ (*null allele*) strongly suppresses PAX-FKHR
- Microarry analysis of *wild-type* versus *PAX-FKHR* muscle: ~750 genes differentially expressed
 - Misexpressed genes = gene targets
 - Unaltered genes potential co-factors
- Other myogenesis regulators- e.g, *MyoD*, *muscleblind*

D-Mef2 is a PAX-FKHR Target Gene in Drosophila Embryos

wild-type,
D-Mef2-GFP

PAX-FKHR, D-Mef2-GFP

Myogenesis: from precursor cell to syncytial muscle

- Mef2 involvement in RMS has not been reported
- "Gotta love the fly"- ONE Mef2 gene versus FOUR in mammals!
- Drugs that "poison" Mef2 activity (HDAC inhibitors) are new potential RMS therapies

Myogenesis: from precursor cell to syncytial muscle

- Myoblast fusion genes are required to form syncytial tissue
- Little is known regarding mammalian myoblast fusion genes
- Could fusion gene misregulation underlie RMS pathogenesis?

PAX-FKHR Screening and Results

- *Df*(3*L*)*vin5* is a strong suppressor
- *antisocial* (*ants*)^{P1729} (*rols*) LOF allele strongly suppresses PAX-FKHR

- Microarry analysis of wild-type versus PAX-FKHR muscle: ~750 genes differentially expressed
 - Misexpressed genes = gene targets
 - Unaltered genes potential co-factors
- Other myoblast fusion regulators- e.g., blownfuse, myoblast city

ants is a PAX-FKHR Target Gene

PAX-FKHR=daughterless-Gal4; UAS-PAX-FKHR / Blue=DAPI | Red=anti-Ants immunofluorescence

Ants1 (Tanc1) is a Mammalian Myoblast Fusion Gene

Ant1 is Not Required for Differentiation

anti-Myosin Heavy Chain (MHC)

Ants1-Silencing Suppresses PAX-FKHR Pathogenicity in Mammalian Myoblasts

Ants1-Silencing Rescues PAX-FKHR RMS Cells from Differentiation-Arrest and Fusion Failure

Myogenesis, RMS Pathogenesis, and Ants1

- Ants1 is a PAX-FKHR target and mammalian myoblast fusion gene
- Correction of *Ants1* expression rescues RMS terminal differentiation arrest; mAtns is a new putative RMS disease gene
- In Vivo profiling: xenografts, gene sequencing, CGH

PAX-FKHR Screening and Results

Ras is a PAX-FKHR genetic interactor

- Microarry analysis of wild-type versus PAX-FKHR muscle: ~750 genes differentially expressed
 - Misexpressed genes = gene targets
 - Unaltered genes = potential co-factors
- Regulators of Epidermal Growth Factor signaling (*i.e.*, *EGFR* ligand, *EGFR* inhibitor, *EGFR*)

Epidermal Growth Factor Receptor Signaling and PAX-FKHR

- ✓ DER = EGF Receptor
- \checkmark sSpi = EGFR Ligand
- Ras- intracellular effector
- ✓ Kek = Kekkon; EGFR inhibitor

Epidermal Growth Factor Receptor Signaling and PAX-FKHR

- ✓ DER = EGF Receptor
- \checkmark sSpi = EGFR Ligand
- ✓ Ras- intracellular effector
 - ✓ Ras^{LOF}
 - ✓ RasGOF
- ✓ Kek = Kekkon; EGFR inhibitor

Epidermal Growth Factor Receptor Signaling and PAX-FKHR

- ✓ DER = \overline{EGF} Receptor
- ✓ sSpi = EGFR Ligand
- ✓ Ras- intracellular effector
 - ✓ Ras^{LOF}
 - ✓ RasGOF
- ✓ Kek = Kekkon; EGFR inhibitor

Myogenesis: EGFR Signaling

- EGFR signaling participates in PAX-FKHR pathogenic activity
- Suggests that directed therapy targeting EGFR (Tarceva) might be a new, effective RMS therapy

Tarceva Therapy Blocks PAX-FKHR Pathogenicity in vivo

Summary and Future Studies

- Utilizing a *Drosophila* model system to identify new PAX-FKHR co-factors and gene targets
 - Genetic screening
 - microarray analysis

- Isolating:
 - Muscle development regulators: Mef2
 - Growth factor signaling: EGFR
 - Myoblast fusion elements: Antisocial

Summary and Future Studies

- Characterize PAX-FKHR co-factors/gene targets for activity in mammalian systems
 - Mammalian myoblasts
 - Tumor tissue/cell lines: Gene Sequencing and Protein Expression
 - Mouse RMS transgenic model

- Long term goals:
 - Drug screening
 - Tumor diagnosis and prognosis
 - General themes in pediatric sarcoma tumorigenesis?

Acknowledgements

- ✓ "the lab":
 - Usha Avirneni
 - ✓ Kathleen Galindo (a.k.a., "fly-girl")
 - ✓ Alicia Bach
 - ✓ Emma Simpson
 - ✓ All past members
- ✓ Collaborators:
 - ✓ Scott Cameron
 - Mark Hatley
- ✓ UTSW Invertebrate Genetics Working Group

- ✓ CMC/UTSWMC Pediatric Pathology and Oncology
 - ✓ Beverly Rogers (!)
- ✓ Funding:
 - ✓ President's Research Council, UTSWMC
 - ✓ Dept of Pathology, Simmons Comprehensive Cancer Center, Dean's Office, UTSWMC
 - ✓ Children's Cancer Fund, Dallas
 - ✓ Burroughs Wellcome Fund (Career Award for Medical Scientists)
 - ✓ Children's Oncology Group/CureSearch Foundation
 - ✓ Alex's Lemonade Stand Foundation