Influenza virus evolution...getting personal

Adam Lauring Department of Medicine, Infectious Diseases Department of Microbiology and Immunology University of Michigan

Why influenza evolution?

Figure 13.2 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Influenza A virus, what you need to know

Nature Reviews | Microbiology

Medina and Garcia-Sastre, Nat Rev Micro 2011

Antigenic drift and seasonal influenza

Global evolution of seasonal influenza viruses

Rambaut et al. Nature 2008

Understanding evolution across scales

What is the influenza virus mutation rate?

- Sequencing assays
 - Bias
 - Lack of power

- Genetic markers
 - Only measure some classes

What is the influenza virus mutation rate?

Class	GFP (nt)	GFP (aa)		
WT	aca uac ggc	ΤΥG		
A->C	a <mark>A</mark> a uac ggc	K Y G		
A->G	Aca uac gAc	ТҮД		
A->U	aca Aac ggc	T N G		
C->A	aca ucc ggc	👔 Т 🐂 🧷		
C+>G	aca uac gCc	TY A		
C−>U	aca Cac ggc	TH G		
G->A	aca HGC ggc	тсс		
G->C	uGg uac ggc Th	r65WY		
G->U	aca <mark>G</mark> ac ggc	T D G		
U->A	aca u <mark>U</mark> c ggc	T F G		
U->C	a U a uac ggc	I Y G		
U->G	aca uac g <mark>U</mark> c	т ч 🗸		

Pauly et al. eLife 2017

Influenza mutation rate...2-3 per replicated genome

Pauly et al. eLife 2017

Are mutations generally good or bad?

Visher et al. PLoS Pathogens 2016

The distribution of fitness effects in influenza A

Visher et al. PLoS Pathogens 2016

Understanding evolution across scales

How does influenza evolve in people?

Within host selection?

Do vaccine-induced antibodies select for escape variants?

- FLUVACS study, 2004-2008
- Last placebo controlled RCT
- 60-70% efficacy
- 5119 person years of observation
- 166 samples analyzed

Pre-season serostatus of sampled individuals

Debbink et al, PLoS Pathogens 2017

Pre-existing antibodies do not impact within host diversity

Debbink et al, PLoS Pathogens 2017

No evidence for positive selection of antigenic variants

Debbink et al, PLoS Pathogens 2017

Evolutionary forces

How does influenza virus evolve in people?

- Household influenza vaccine effectiveness
 - Prospective household cohort
 - Families \geq 4, 2 children
 - > 6000 person years of observation
 - 249 samples, 200 individuals
 - Transmission pairs within households
- Next generation sequencing
 - Infer transmission and bottleneck
 - Define within host dynamics

Cross-sectional study

Longitudinal study

Within host genetic diversity is low

C		F ue en en en en e	M	C:+-			
Season	Suptype	Frequency	iviutation	Site	- 1		: :
10/11	H3N2	0.07	E62G	E			A0
10/11	H3N2	0.09	L86I	Е			
11/12	H3N2	0.07	V297A	С	0.6 -		
12/13	H3N2	0.07	I214T	D	2	$= H\Delta 1.128\Delta$	
13/14	H1N1	0.02	R208K	Ca	ane	- HA1:120A	
14/15	H3N2	0.18	F193S	В	d d	— HA1:262N	
14/15	H3N2	0.11	T128A	В	<u>0</u> 0.4 1	— HA1:62G	
14/15	H3N2	0.41	1260V	Е	<u>a</u>		
14/15	H3N2	0.03	S262N	Е	ĝ		
14/15	H3N2	0.36	G208R	D	🛈 0.2 -	Δ.	
14/15	H3N2	0.03	A163T	В		N	
14/15	H3N2	0.12	1307R	С		Na	
14/15	H3N2	0.04	K189N	В	0.0 -	- Dan	
14/15	H3N2	0.03	D53E	С		2007 2000	2011 2013 2015 2017
14/15	H3N2	0.02	S312G	С		2007 2009	Year
14/15	H3N2	0.03	I242T	D			1941
14/15	H3N2	0.16	1242L	D			
14/15	H3N2	0.16	1307R	С			

Cross-sectional study

Longitudinal study

Within host dynamics, 2014-2015 season

Within host dynamics, 2014-2015 season

Within host dynamics, 2014-2015 season

Selection vs. Drift....depends on population size

Describing within host processes – effective population size

999,999 Hens ; 1 Cock

Census Population : 1,000,000

Effective Population: 4

Describing within host processes – effective population size

Diffusion models to estimate effective population size

$$P(p_0, p_t, t | N_e) = \sum_{i=1}^{n} p_0(1 - p_0)(i+1)(2i+1)F(1 - i, i+2, 2, p_0) \times F(1 - i, i+2, 2, p_t)e^{-[i(i+1)/2N_e]t}$$

Genetic drift is a dominant force in small populations

What happens between hosts?

Sequence based inference of 41 transmission pairs

Bottleneck size – presence/absence model

Bottleneck size – beta binomial model

Mean Bottleneck 1.7

Sobel et al. JVI 2017

Evolution within and between hosts

Evolution across scales

Very high mutation rates Strong purifying selection

Very high mutation rates Strong purifying selection Lots of genetic drift Migration?

Lots of genetic drift Random fixation of deleterious alleles Weak selection?

Influenza viruses are like compulsive gamblers

Will Fitzsimmons Danny Lyons **JT McCrone** Kayla Peck

<u>Former</u> Kari Debbink Matt Pauly Elisa Visher Shawn Whitefield

<u>UM School of Public Health</u> Arnold Monto Emily Martin Josh Petrie Doris Duke Charitable Foundation IDSA/Pfizer Young Investigator Award NIAID R01 AI11886 Burroughs Wellcome Fund, PATH

High quality variant calling is critical in deep sequencing

McCrone and Lauring, JVI 2016

Evolution within and between hosts

Mutation rate and effective population size (Ne)